Optimizing my Ford-Fulkerson implementation for sparse graphs.
[and.git] / 11385 - Da Vinci Code / 11385.cpp
blob29fc6b2fc5c1dc11d24e139b7aa947a8b51cfe48
1 /*
2 Problem: 11385 - Da Vinci Code
3 Author: Andrés Mejía-Posada
5 Que gonorrea de problema.
7 Accepted.
8 */
10 using namespace std;
11 #include <algorithm>
12 #include <iostream>
13 #include <iterator>
14 #include <sstream>
15 #include <fstream>
16 #include <cassert>
17 #include <climits>
18 #include <cstdlib>
19 #include <cstring>
20 #include <string>
21 #include <cstdio>
22 #include <vector>
23 #include <cmath>
24 #include <queue>
25 #include <deque>
26 #include <stack>
27 #include <map>
28 #include <set>
30 #define D(x) cout << #x " is " << x << endl
32 vector<int> fib;
34 int binary_search(int what, const vector<int> &where){
35 int n = where.size();
36 int low = 0, high = n - 1;
37 while (low < high){
38 int mid = (low + high) / 2;
39 if (where[mid] < what){
40 low = mid + 1;
41 }else{
42 high = mid;
45 if (where[low] != what) return -1;
46 return low;
49 int main(){
50 fib.push_back(1);
51 fib.push_back(2);
52 while (fib[fib.size()-1] + fib[fib.size()-2] > 0){ //Before overflow
53 fib.push_back(fib[fib.size()-1] + fib[fib.size()-2]);
56 int T;
57 for(cin >> T; T--; ){
58 int n;
59 cin >> n;
60 vector<int> nums(n);
61 for (int i=0; i<n; ++i) cin >> nums[i];
63 string s;
64 getline(cin, s);
65 getline(cin, s);
66 for (int i=0; i<s.size(); ++i)
67 if (!isupper(s[i])){
68 s.erase(i, 1);
69 i--;
72 vector<int> pos(n);
73 for (int i=0; i<n; ++i){
74 pos[i] = binary_search(nums[i], fib);
77 string ans( *(max_element(pos.begin(), pos.end())) + 1, ' ');
79 for (int i=min(s.size(), pos.size()) - 1; i >= 0; --i){
80 ans[pos[i]] = s[i];
83 cout << ans << endl;
87 return 0;